

Bengaluru – 560049, Karnataka

STUDENT HANDBOOK

Academic Year 2023-2024

Master of Master of Pharmacology

Affiliated to

Rajiv Gandhi University of Health Sciences Karnataka Bengaluru – 560 041 India

Students Handbook: Master of Pharmacology

East Point College of Pharmacy

Approved by Pharmacy Council of India, New Delhi

Affiliated *to* Rajiv Gandhi University of Health Sciences Karnataka Bengaluru – 560 041 India

Department of Pharmacology

Syllabus of Master of Pharmacy for Admission Batch of AY 2022-2023 First Year- Effective from 2022-2023

Second Year- Effective from 2023-2024

as per

Choice Based Credit and Grading System

East Point College of Pharmacy: Master's Degree

Vision and Mission of the Institution

Vision of the Institution

The East Point College of Pharmacy aspires to be a globally acclaimed institution, **recognized** for **excellence in** pharmaceutical education, research and nurturing students for **holistic development.**

	Mission of the Institution
M1	Create pharmacy graduates through quality education
M2	Promote innovation, creativity , and excellence in teaching , learning, and research
M3	Inspire integrity, teamwork, critical thinking, personal development, and ethics in students and lay the foundation for lifelong learning
M4	Serve the healthcare, technological, scientific, and economic needs of then society.

Master of Pharmacology

- Programme Educational Objectives(PEO)
- Programme Specific Outcomes(PSO)
- Programme Outcomes(PO)
- Course Outcomes(CO)

East Point Campus, Jnana Prabha, Virgo Nagar Post,

Bengaluru – 560049, Karnataka

PROGRAM SPECIFIC OUTCOMES M PHARM PHARMACOLOGY Students will acquire the ability to write and present substantial technical reports/ PSO1 documents effectively. This skill set ensures clear and articulate communication of research findings and technical information in the field of pharmacology Graduates will possess advanced practical skills for conducting preclinical toxicity studies, including a nuanced understanding of various types of toxicity. They will PSO2 demonstrate adeptness in safety monitoring, reporting, and close-out activities, ensuring comprehensive safety evaluations in drug development processes Students will demonstrate expertise in clinical trial design, understanding regulatory requirements, and executing safety monitoring, reporting, and close-out activities in PSO3 clinical trials. They will also exhibit a strong grasp of pharmacovigilance principles, including the detection and assessment of adverse drug reactions and the implementation of effective reporting systems

	PROGRAM EDUCATIONAL OBJECTIVES
	M PHARM PHARMACOLOGY
PEO1	Pursue higher education in the core and competency areas of pharmacy
	Employed as productive and valued professional in pharmaceutical manufacturing, sales
PEO2	and marketing, business analyst, FR&D, drug regulatory affairs, product manager and
	academics
DEU3	Successful entrepreneur in pharmaceutical businesses such as manufacturing, contract
1103	manufacturing organizations, export orientated units, market research and consultancy.
PFO4	Continue to learn and adapt evolving technologies in the core or allied areas of
1104	pharmaceutical sciences.

	PROGRAM OUTCOMES
	M.PHARMACY - PHARMACOLOGY
PO1	Ability to independently carry out research /investigation and development work.
PO2	Ability to write and present a substantial technical report/document
DOA	Students should be able to demonstrate a degree of mastery over the area as per the
PO3	requirements in the appropriate bachelor's program.
	Graduates will demonstrate a profound comprehension of drug actions at the cellular and
PO4	molecular levels, along with an in-depth knowledge of the pathophysiology and
	pharmacotherapy of various diseases.
	Student will demonstrate knowledge of good laboratory practices, including the
PO5	maintenance and handling of experimental animals, ensuring regulatory compliance and
	ethical conduct in pharmacological research.
	Students will demonstrate expertise in good clinical practices including clinical trial
PO6	design, understanding regulatory requirements, and executing safety monitoring,
	reporting, and close-out activities in clinical trials.

	COURSE OUTCOMES
	M PHARM PHARMACOLOGY
Course:	Code: MPL101T Modern Pharmaceutical Analytical Technique
C01	Understand the pharmacology of different category of drugs.
CO2	Skills in selecting suitable techniques for the analysis of drugs and pharmaceuticals
CO3	To expand the theoretical knowledge on various instrumental techniques available for analysis of organic substances
CO4	To apply the knowledge learnt in developing new procedures of their own design
Course:	Code: MPL101P Modern Pharmaceutical Analytical Technique
CO1	Understand the principles, procedures and applications of different analytical techniques
CO2	Determine the structure of various categories of drugs by interpreting the results and data obtained from a variety of analytical techniques such as UV, visible and IR spectroscopic techniques
CO3	Separate the components of chemical mixture by different chromatographic techniques like paper, TLC, HPLC and electrophoresis
CO4	Perform skillfully in all their laboratory performances as per prescribed analytical guidelines
Course:	Code: MPL102T Advanced Pharmacology I
C01	Explain the pharmacology of drugs and their therapeutic knowledge
CO2	Understand the mechanism of drugs at cellular and molecular level
CO3	Understand the adverse effects, contraindications and clinical uses of the drugs used in the treatment of diseases
CO4	Discuss the pathophysiology and pharmacotherapy (both existing and recent advances) and pharmacokinetics of various drugs
Course:	Code: MPL103T Pharmacological and Toxicological Screening Methods I
CO1	Appraise the regulations and ethical requirement for the usage of experimental animals.
CO2	Describe the various animals used in the drug discovery process and good laboratory practices in maintenance and handling of experimental animals
CO3	Describe the various newer screening methods involved in the drug discovery process
CO4	Appreciate and correlate the preclinical data to humans
Course:	Code: MPL104T Cellular and Molecular Pharmacology
CO1	Explain the receptor signal transduction processes.
CO2	Explain about molecular pathway affected by drugs.
CO3	Appreciate the applicability of molecular pharmacology and biomarkers in drug discovery process.
CO4	Demonstrate molecular biology techniques as applicable for pharmacology

Course	Code: MPL105P
Course.	Pharmacology I
CO1	Design and analyze the given samples using spectroscopy, chromatography, fluorimetry, HPLC
	and flame photometry
CO2	Perform experiment with rodents for CNS, diuretics, analgesic related activities
CO3	Administer the drugs through various routes, learnt blood sampling, anesthetic, and euthanasia
	techniques
CO4	Handle molecular techniques to understand molecular biology, assess genetical alterations, RNA
	and DNA
Course:	Code: MPL201T
	Advanced Pharmacology II
C01	Explain the mechanism of drug action at cellular and molecular level
CO2	Discuss the pathophysiology and pharmacotherapy of certain diseases
CO3	Understand the adverse effects, contraindications, clinical uses of the drugs used in some diseases
CO4	To know the recent advances in the treatment of certain diseases students will gain the knowledge
	in the field of pharmacology of drugs and their therapeutic application
Course:	Code: MPL202T
	Pharmacological and Toxicological Screening Methods II
CO1	Explain the various types of toxicity studies
CO2	Appreciate the importance of ethical and regulatory requirements for toxicity studies.
CO3	Demonstrate the practical skills required to conduct the preclinical toxicity studies.
CO4	Discuss the ethical considerations and regulatory requirements governing pharmacological and
	toxicological screening
Course:	Code: MPL203T
000150	Principles of Drug Discovery
C01	Explain the various stages and targets of drug discovery
CO2	Appreciate the importance of genomics, proteomics and bioinformatics in drug discovery
CO3	Explain various lead seeking method and lead optimization
CO4	Appreciate the importance of the role of computer aided drug design in drug discovery
Course	Code: MPL204T
course.	Clinical Research and Pharmacovigilance
CO1	Explain the regulatory requirement for conducting clinical trial
CO2	Demonstrate the type of clinical trial design
CO3	Explain the responsibilities of key players in clinical trials
CO4	Explain the principles of pharmacovigilance and execute safety monitoring, reporting and close-out
004	activities

Courses	Code: MPL205P
Course.	Pharmacology II
CO1	Perform in vitro Pharmacological experiments using various isolated tissue preparations, and were
COI	able to estimate various biological samples quantitatively
CO2	Understand the OECD guidelines and perform acute, dermal toxicity studies and were able to
02	interpret the pharmacokinetic profile of a given drug.
CO3	Understand cardiovascular responses, drug efficacy by various experimental techniques, will be
005	able to design clinical trials and monitor ADR.
CO4	Understand the drug discovery process and will be able to develop a new drug through in silico
0.04	techniques
Courses	Code: MPL205P
Course.	Pharmacology III
CO1	Learn methods for assessing the toxicity and safety profiles of drugs through acute and chronic
COI	toxicity studies, cytotoxicity assays, and evaluation of adverse drug reactions.
CO2	Perform screening assays to evaluate the pharmacological activities of drugs, including studies on
02	anti-inflammatory, analgesic, anti-diabetic, anti-hypertensive, and anti-microbial properties
CO3	Conduct experiments to assess the bioavailability and bioequivalence of different drug
	formulations using in vitro and in vivo models
CO4	Explore the role of genetic variations in drug response and learn how to interpret
	pharmacogenomics data to optimize drug therapy for individual patients
Course:	Project
CO1	Apply concepts and methodology of pre-clinical pharmacology for executing the project (Thesis)
	with discussion and presentation skills
CO2	Evaluate the planning of research and its budget and to communicate with the preclinical
	pharmacologist in written and oral forms
CO3	Understanding and executing the analytical techniques of assessing drugs potency and its
	evaluation parameters with bio statistical knowledge
CO4	Develop knowledge about various software's used in research work to precise the therapeutic
004	activity of the concerned

Preface By Board of Studies in Pharmacy

1. Short Title and Commencement

These regulations shall be called as "The Revised Regulations for the Master of Pharmacy (M. Pharm.) Degree Program - Credit Based Semester System (CBSS) of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by the authorities of the university.

2. Minimum qualification for admission

A Pass in the following examinations

- a. B. Pharm Degree examination of an Indian university established by law in India from an institution approved by Pharmacy Council of India and has scored not less than 55 % of the maximum marks (aggregate of 4 years of B.Pharm.)
- b. Every student, selected for admission to post graduate pharmacy program in any PCI approved institution should have obtained registration with the State Pharmacy Council or should obtain the same within one month from the date of his/her admission, failing which the admission of the candidate shall be cancelled. Note: It is mandatory to submit a migration certificate obtained from the respective university where the candidate had passed his/her qualifying degree (B.Pharm.)

3. Duration of the program

The program of study for M.Pharm. shall extend over a period of four semesters (two academic years). The curricula and syllabi for the program shall be prescribed from time to time by Pharmacy Council of India, New Delhi.

4. Medium of instruction and examinations

Medium of instruction and examination shall be in English.

5. Working days in each semester

Each semester shall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from the month of December/January to May/June in every calendar year.

6. Attendance and progress

A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. Program/Course credit structure

As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, practical classes, seminars, assignments, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly the credit associated with any of the other academic, co/extracurricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week/per activity.

7.1. Credit assignment

7.1.1. Theory and Laboratory courses

Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having four lectures per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

The contact hours of seminars, assignments and research work shall be treated as that of practical courses for the purpose of calculating credits. i.e., the contact hours shall be multiplied by 1/2. Similarly, the contact hours of journal club, research work presentations and discussions with the supervisor shall be considered as theory course and multiplied by 1.

7.2. Minimum credit requirements

The minimum credit points required for the award of M. Pharm. degree is 95. However based on the credit points earned by the students under the head of co-curricular activities, a student shall earn a maximum of 100 credit points. These credits are divided into Theory courses,

Practical, Seminars, Assignments, Research work, Discussions with the supervisor, Journal club and Co-Curricular activities over the duration of four semesters. The credits 3 are distributed semester-wise. Courses generally progress in sequence, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. Academic work

A regular record of attendance both in Theory, Practical, Seminar, Assignment, Journal club, Discussion with the supervisor, Research work presentation and Dissertation shall be maintained by the department / teaching staff of respective courses.

9. Course of study

The specializations in M.Pharm program is given: List of M.Pharm. Specializations and their Code

Sl. No	Specialization	Code
1	Pharmaceutics	MPH
2	Pharmacology	MPL

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown.

10. Internal assessment

Continuous mode The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given

Scheme for awarung internat	assessment. Continuous
Theory	y
Criteria	Maximum Marks
Attendance (Refer Table)	8
Student – Teacher interaction 2 10 10	2
Total	10
Practical	
Attendance (Refer Table - 28)	10
Based on Practical Records, Regular viva voce,	10
etc	
Total	20

Scheme for awarding internal assessment: Continuous

Percentage of Attendance	Theory	Practical
95 - 100	8	10
90 - 94	6	7.5
85 - 89	4	5
80 - 84	2	2.5
Less than 80	0	0

Guidelines for the allotment of marks for attendance

11. Sessional Exams

Two sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical sessional examinations is given in the table. The average marks of two sessional exams shall be computed for internal assessment as per the requirements given.

12. Promotion and award of grades

A student shall be declared PASS and eligible for getting grade in a course of M.Pharm. programme if he/she secures at least 50% marks in that particular course including internal assessment.

13. Carry forward of marks

In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment

A student shall have the opportunity to improve his/her performance only once in the sessional exam component of the internal assessment. The re-conduct of the sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Re-examination of end semester examinations

Re-examination of end semester examination shall be conducted as per the schedule given. The exact dates of examinations shall be notified from time

Tentative schedule of end semester examinations

Semester	For Regular Candidates	For Failed Candidates
I and III	November / December	May / June
II and	May / June	November / December

16. Allowed to keep terms (ATKT):

No student shall be admitted to any examination unless he/she fulfils the norms given in 6. ATKT rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I and II semesters till the III semester examinations. However, he/she shall not be eligible to attend the courses of IV semester until all the courses of I, II and III semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to IV semesters within the stipulated time period as per the norms.

Note: Grade AB should be considered as failed and treated as one head for deciding ATKT. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances

17.1. Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given.

Detter Stades and St	auc pomits equivalent	to I ci centage of main	s and perior mances
Marks Obtained	Letter Grade	Grade Point	Performance
90.00-100	0	10	Outstanding
80.00 - 89	А	9	Excellent
70.00 - 79.99	В	8	Good
60.00 - 69.99	С	7	Fair
50.00 - 59.99	D	6	Average
Less than 50	F	0	Fail
Absent	AB	0	Fail

Letter grades and grade points equivalent to Percentage of marks and performances

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3 and C4 and the student's grade points in these courses are G1, G2, G3 and G4, respectively, and then students' SGPA is equal to:

SGPA =
$$\frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4}{C_1 + C_2 + C_3 + C_4}$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

SGPA =
$$\frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4 * ZERO}{C_1 + C_2 + C_3 + C_4}$$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed status in case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$CGPA = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4}{C_1 + C_2 + C_3 + C_4}$$

S1, S2, S3, is the SGPA of semester I,II,III,....

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of. 7.50 and above

First Class = CGPA of 6.00 to 7.49

Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted.

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below

Evaluation of Dissertation Book		
Objective(s) of the work done	50 Marks	
Methodology adopted	150 Marks	
Results and Discussion	250 Marks	
Conclusion and Outcomes	50 Marks	
Total	500 Marks	

Evaluation of Presentation		
Presentation of Work	100 Marks	
Communication skills	50 Marks	
Question and answer skill	100	
Total	250 Marks	

22. Award of Ranks

Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the M. Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the M. Pharm program in minimum prescribed number of years, (two years) for the award of Ranks.

23. Award of degree

Candidates who fulfil the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

24. Duration for completion of the program of study

The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

25. Revaluation I Re-totalling of answer papers

There is no provision for revaluation of the answer papers in any examination. However, the candidates can apply for retotalling by paying prescribed fee.

26. Re-admission after break of study

Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee

PROGRAM STRUCTURE FOR M. PHARMACY (PHARMACOLOGY)

Course of study for M. Pharm. (Pharmacology)					
Course	Course	Credit	Credit	Hrs / Wk	Marks
Code		Hours	Points		
	Seme	ster I			
MPA101T	Modern Pharmaceutical		4		100
	Analytical Techniques	4	4	4	100
MPL101T	Advanced Pharmacology-I	4	4	4	100
MPL102T	Pharmacological and	4	4	4	100
	Toxicological Screening				
	Methods-				
	Ι				
MPL103T	Cellular and Molecular	4	4	4	100
	Pharmacology				
MPL104P	Pharmacology Practical I	12	6	12	150
-	Seminar/Assignments	7	4	7	100
Total 35 26		26	35	650	
	Seme	ster II			
MPL201T	Advanced Pharmacology II	4	4	4	100
MPL102T	Pharmacological and	4	4	4	
_	Toxicological Screening				100
	Methods- II				
MPL203T	Principles of Drug Discovery	4	4	4	100
			-		100
MPL204T	Experimental	4	4	4	100
	Pharmacology practical-				100
	II				
MPL205P	Pharmacology Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Course of study for M. Pharm. III Semester 14 14 (Common for All Specializations)

Course	Course	Credit	Credit
Code		Hours	Points
MRM 301T	Research Methodology and Biostatistics*	4	4
-	Journal Club	1	1
-	Discussion / Presentation (Proposal Presentation)	2	2
-	Research Work	28	14
	Total	35	21

* Non University Exam

Course of study for M. Pharm. IV Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
-	Journal Club	1	1
-	Research Work	31	16
-	Discussion / Final Presentation	3	3
	Total	35	20

Semester wise credits distribution

Semester	Credit Points
Ι	26
II	26
III	21
IV	20
Co-curricular Activities (Attending Conference, Scientific	Minimum = 02
Presentations and Other Scholarly Activities)	Maximum = $07*$
Total Credit Points	Minimum = 95
	Maximum = 100^*

*Credit Points for Co-Curricular Activities

M. PHARM. PHARMACOLOGY(MPL)

SYLLABUS

MODERN PHARMACEUTICAL ANALYSIS (MPA101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

1. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy.

IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy **Spectroflourimetry:** Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation an Applications

Of fluorescencespectrophotometer.

Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.
- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy

- 4 **Chromatography**: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution and applications of the following:
 - a) Paper chromatography b) Thin Layer chromatography
 - c) Ion exchange chromatography d) Column chromatography
 - e) Gas chromatography f) High Performance Liquid chromatography
 - g) Affinity chromatography
- 5 Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing X-ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- **6 Immunological assays:** RIA (Radio immuno assay),ELISA, Bioluminescence assays.

REFERENCES

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBSPublishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, MarcelDekker Series.

ADVANCED PHARMACOLOGY-I (MPL101T)

The subject is designed to strengthen the basic knowledge in the field of **Scope**

Pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, this subject helps the students to understand the concepts of drug action and mechanisms involved

Objectives

Upon completion of the course the student shall be able to:

- Discuss the pathophysiology and pharmacotherapy of certain diseases
- Explain the mechanism of drug actions at cellular and molecular level
- Understand the adverse effects, contraindications and clinical uses of drugs used intreatment of diseases

THEORY UNIT-I

60 HOURS 12 Hrs

General Pharmacology

Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding. 06 hrs

 a. Pharmacodynamics: Mechanism of drug action and the relationship between drug concentration and effect. Receptors, structural and functional families of receptors, quantitation of drug receptors interaction and elicited effects. 06 hrs

UNIT-II

Neurotransmission

a. General aspects and steps involved in neurotransmission.

b. Neurohumoral transmission in autonomic nervous system (Detailed study aboutneurotransmitters- Adrenaline and Acetyl choline).

c. Neurohumoral transmission in central nervous system (Detailed study about neurotransmitters- histamine, serotonin, dopamine, GABA, glutamate and glycine].d. Non adrenergic non cholinergic transmission (NANC). Co-transmission

Systemic Pharmacology

06 Hrs

12 Hrs

06 Hrs

A detailed study on pathophysiology of diseases, mechanism of action, pharmacology andtoxicology of existing as well as novel drugs used in the following systems

a. Autonomic Pharmacology

Parasympathomimetics and lytics, sympathomimetics and lytics, agents affecting neuromuscular junction

UNIT-III Central nervous system Pharmacology

General and local anesthetics Sedatives and hypnotics, drugs used to treat anxiety. 02 hrs Depression, psychosis, mania, epilepsy, neurodegenerative diseases. 05 hrs Narcotic and non-narcotic analgesics. 03 hrs

UNIT-IV

Cardiovascular Pharmacology

Diuretics, antihypertensives, antiischemics, anti- arrhythmics, drugs for heart failu	re
and hyperlipidemia.	07 hrs
Hematinics, coagulants , anticoagulants, fibrinolytics and anti-platelet drugs	05 hrs

UNIT-V

Autocoid Pharmacology

The physiological and pathological role of Histamine, Serotonin, I	Kinins Prostaglandins
Opioid autocoids.	08 hrs
Pharmacology of antihistamines, 5HT antagonists.	04 hrs

REFEERENCES

- 1. The Pharmacological basis of therapeutics- Goodman and Gill man's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan et al.
- 3. Basic and Clinical Pharmacology by B.G -Katzung
- 4. Pharmacology by H.P. Rang and M.M. Dale.
- 6. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- 6. Text book of Therapeutics, drug and disease management by E T. Herfindal and Gourley.
- 7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for **Industrial Scientists**

12 Hrs

02 hrs

12 Hrs

12 Hrs

PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS-I(MPL102T)

Scope

This subject is designed to impart the knowledge on preclinical evaluation of drugs and recent experimental techniques in the drug discovery and development. The subject content helps the student to understand the maintenance of laboratory animals as per the guidelines, basic knowledge of various *in-vitro* and *in-vivo* preclinical evaluation processes

Objectives

Upon completion of the course the student shall be able to,

- Appraise the regulations and ethical requirement for the usage of experimental animals.
- Describe the various animals used in the drug discovery process and good laboratory
- practices in maintenance and handling of experimental animals
- Describe the various newer screening methods involved in the drug discovery process
- Appreciate and correlate the preclinical data to humans

THEORY

60 HOURS

12 Hrs

12 Hrs

Unit-I Laboratory Animals

Common lab animals: Description, handling and applications of different species and strains of animals. 02 hrs

Transgenic animals. Production, maintenance and applications	$02\mathrm{ms}$
Anaesthesia and euthanasia of experimental animals.	03 hrs
Maintenance and breeding of laboratory animals.	02 hrs
CPCSEA guidelines to conduct experiments on animals	02 hrs
Good laboratory practice.	01 hrs

Unit-II

Preclinical screening of new substances for the pharmacological activity using *in vivo*, *in vitro*, and other possible animal alternative models.

General principles of preclinical screening. CNS Pharmacology: behavioral and muscle co ordination, CNS stimulants and depressants, anxiolytics, anti-psychotics, anti epileptics and nootropics. Drugs for neurodegenerative diseases like Parkinsonism, Alzheimers and multiple sclerosis. Drugs acting on Autonomic Nervous System.

Unit-III

Preclinical screening of new substances for the pharmacological activity using *invivo*, in vitro, and other possible animal alternative models.

Respiratory Pharmacology: anti-asthmatics, drugs for COPD and anti allergics. Reproductive Pharmacology: Aphrodisiacs and antifertility agents Analgesics, antiinflammatory and antipyretic agents. Gastrointestinal drugs: anti ulcer, anti -emetic, anti-diarrheal and laxatives.

Unit-IV

Preclinical screening of new substances for the pharmacological activity using *invivo*, in vitro, and other possible animal alternative models.

Cardiovascular Pharmacology: antihypertensives, antiarrythmics, antianginal, antiatherosclerotic agents and diuretics. Drugs for metabolic disorders like anti-diabetic, antihyperlipidemic, and agents. Anti cancer agents

Unit V

Preclinical screening of new substances for the pharmacological activity using *invivo*, in vitro, and other possible animal alternative models.

Immunosuppressants and immunomodulators 02 hrs

General principles of immunoassay: Theoretical basis and optimization of immunoassay, heterogeneous and homogenous immunoassay systems. Immunoassay methods evaluation; protocol outline, objectives and preparation. Immunoassay for digoxin and insulin 08 hrs

Limitations of animal experimentation and alternate animal experiments. 01 hr Extrapolation of *in vitro* data to preclinical and preclinical to humans. 01 hr

12 Hrs

12 hrs

12 hrs

REFERENCES

- 1. Biological standardization by J.H. Burn D.J. Finney and I.G. Goodwin
- 2. Indian Pharmacopeia and other Pharmacopeias
- 3. Screening methods in Pharmacology by Robert Turner. A
- 4. Evaluation of drugs activities by Laurence and Bachrach
- 5. Methods in Pharmacology by Arnold Schwartz.
- 6. Fundamentals of experimental Pharmacology by M.N.Ghosh
- 7. Pharmacological experiment on intact preparations by Churchill Livingstone
- 8. Drug discovery and Evaluation by Vogel H.G.
- 9. Experimental Pharmacology by R.K.Goyal.
- 10. Preclinical evaluation of new drugs by S.K. Gupta

CELLULAR AND MOLECULAR PHARMACOLOGY (MPL103T)

Scope:

The subject imparts a fundamental knowledge on the structure and functions of cellular components and help to understand the interaction of these components with drugs. This information will further help the student to apply the knowledge in drug discovery process

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the receptor signal transduction processes.
- Explain the molecular pathways affected by drugs.
- Appreciate the applicability of molecular pharmacology and biomarkers in drugdiscovery process.
- Demonstrate molecular biology techniques as applicable for pharmacology

Unit I

12 Hrs

Cell biology

Structure and functions of cell and its organelles

Genome organization. Gene expression and its regulation, importance of siRNA and micro RNA, gene mapping and gene sequencing

Cell cycles and its regulation.

Cell death– events, regulators, intrinsic and extrinsic pathways of apoptosis. Necrosis and autophagy.

Unit II

Cell signaling

Intercellular and intracellular signaling pathways.

Classification of receptor family and molecular structure ligand gated ion channels; G-protein coupled receptors, tyrosine kinase receptors and nuclear receptors.

Secondary messengers: cyclic AMP, cyclic GMP, calcium ion, inositol 1,4,5-

trisphosphate, (IP3), NO, and diacylglycerol.

Detailed study of following intracellular signaling pathways: cyclic AMP signaling pathway, mitogen-activated protein kinase (MAPK) signaling, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway.

12Hrs

Unit III

Principles and applications of genomic and proteomic tools 06 hrs

DNA electrophoresis, PCR (reverse transcription and real time), Gene sequencing, micro array technique, SDS page, ELISA and western blotting.

Recombinant DNA technology and gene therapy

Basic principles of recombinant DNA technology-Restriction enzymes, various types of vectors. Applications of recombinant DNA technology. Gene therapy- Various types of gene transfer techniques, clinical applications and recent advances in gene therapy

Unit IV

Pharmacogenomics

Gene mapping and cloning of disease gene. Genetic variation and its role in health/ pharmacology Polymorphisms affecting drug metabolism Genetic variation in drug transporters Genetic variation in G protein coupled receptors Applications of proteomics science: Genomics, proteomics, metabolomics, functionomics, nutrigenomics

Immunotherapeutics

Types of immunotherapeutics, humanisation antibody therapy, Immunotherapeutics in clinical practice

Unit V

a. Cell culture techniques

Basic equipments used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of cells and their application.

Principles and applications of cell viability assays, glucose uptake assay, Calcium influx assays. Principles and applications of flow cytometry

b. Biosimilars

06 hrs

08 hrs

04 hrs

12Hrs

12Hrs

12 Hrs

References:

- 1. The Cell, A Molecular Approach. Geoffrey M Cooper.
- 2. Pharmacogenomics: The Search for Individualized Therapies. Edited by J. Licinio and M -L. Wong.

Experimental Pharmacology- I (MPL104P)

- 1. Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6.Estimation of sodium/potassium by flame photometry

Handling of laboratory animals.

- 1. Various routes of drug administration.
- 2. Techniques of blood sampling, anesthesia and euthanasia of experimental animals.
- 3. Functional observation battery tests (modified Irwin test)
- 4. Evaluation of CNS stimulant, depressant, anxiogenics and anxiolytic, anticonvulsant activity.
- 5. Evaluation of analgesic, anti-inflammatory, local anesthetic, mydriatic and miotic activity.
- 6. Evaluation of diuretic activity.
- 7. Evaluation of antiulcer activity by pylorus ligation method.
- 8. Oral glucose tolerance test.
- 9. Isolation and identification of DNA from various sources (Bacteria, Cauliflower, onion, Goat liver).
- 10. Isolation of RNA from yeast
- 11. Estimation of proteins by Braford/Lowry's in biological samples.
- 12. Estimation of RNA/DNA by UV Spectroscopy
- 13. Gene amplification by PCR.
- 14. Protein quantification Western Blotting.
- 15. Enzyme based *in-vitro* assays (MPO, AChEs, α amylase, α glucosidase).
- 16. Cell viability assays (MTT/Trypan blue/SRB).
- 17. DNA fragmentation assay by agarose gel electrophoresis.

- 18. DNA damage study by Comet assay.
- 19. Apoptosis determination by fluorescent imaging studies.
- 20. Pharmacokinetic studies and data analysis of drugs given by different routes of administration using softwares
- 21. Enzyme inhibition and induction activity
- 22. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (UV)
- 23. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (HPLC)

References

- 1. CPCSEA, OECD, ICH, USFDA, Schedule Y, EPA guidelines,
- 2. Fundamentals of experimental Pharmacology by M.N.Ghosh
- 3. Handbook of Experimental Pharmacology by S.K. Kulkarni.
- 4. Drug discovery and Evaluation by Vogel H.G.
- 5. Spectrometric Identification of Organic compounds Robert M Silverstein,
- 6. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman,
- 7. Vogel's Text book of quantitative chemical analysis Jeffery, Basset, Mendham, Denney,
- 8. Basic Cell Culture protocols by Cheril D. Helgason and Cindy L.Mille
- 9. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor)
- 10. Animal Cell Culture: A Practical Approach by John R. Masters (Editor)

ADVANCED PHARMACOLOGY-II (MPL201T)

Scope

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved

Objectives

Upon completion of the course the student shall be able to:

- Explain the mechanism of drug actions at cellular and molecular level
- Discuss the Pathophysiology and pharmacotherapy of certain diseases
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

12 Hrs

12 Hrs 12 Hrs

UNIT-I

Endocrine Pharmacology

Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones

Anti-thyroid drugs, Oral hypoglycemic agents, Oral contraceptives, Corticosteroids. Drugs affecting calcium regulation

UNIT-II		
Chemotherapy		

Cellular and molecular mechanism of actions and resistance of antimicrobial agents such as ß-lactams, aminoglycosides, quinolones, Macrolide antibiotics. Antifungal, antiviral, and anti-TB drugs.

UNIT-III	12 Hrs
Chemotherapy	06 Hrs

Drugs used in Protozoal Infections Drugs used in the treatment of Helminthiasis Chemotherapy of cancer

Immunopharmacology

Cellular and biochemical mediators of inflammation and immune response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma and COPD.

Immunosuppressants and Immunostimulants

UNIT-IV

GIT Pharmacology

Antiulcer drugs, Prokinetics, antiemetics, anti-diarrheals and drugs for constipation and irritable bowel syndrome.

Chronopharmacology

Biological and circadian rhythms, applications of chronotherapy in various diseases like cardiovascular disease, diabetes, asthma and peptic ulcer.

UNIT-V

Free radicals Pharmacology

Generation of free radicals, role of free radicals in etiopathology of various diseases such as diabetes, neurodegenerative diseases and cancer. Protective activity of certain important antioxidant

Recent Advances in Treatment:

Alzheimer 's disease, Parkinson's disease, Cancer, Diabetes mellitus

References

- 1. The Pharmacological basis of therapeutics- Goodman and Gill man's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug therapy by David E Golan et al.
- 3. Basic and Clinical Pharmacology by B.G -Katzung
- 4. Pharmacology by H.P. Rang and M.M. Dale.
- 5. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- 6. Text book of Therapeutics, drug and disease management by E T. Herfindal and Gourley.
- 7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists

06 Hrs

12 hrs

08 Hrs

12hrs 04 Hrs

08hrs

04 Hrs

TOXICOLOGICAL SCREENING METHODS (MPL202T)

Scope:

The subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the various types of toxicity studies.
- Appreciate the importance of ethical and regulatory requirements for toxicity studies.
- Demonstrate the practical skills required to conduct the preclinical toxicitystudies.

Unit I

12 Hrs

Basic definition and types of toxicology (general, mechanistic, regulatory and descriptive) Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y OECD principles of Good laboratory practice (GLP)

History, concept and its importance in drug development

Unit II

Acute, sub-acute and chronic- oral, dermal and inhalational studies as per OECD guidelines.

Acute eye irritation, skin sensitization, dermal irritation & dermal toxicity studies. Test item characterization- importance and methods in regulatory toxicology studies

Unit III

Reproductive toxicology studies, Male reproductive toxicity studies, female reproductive studies (segment I and segment III), teratogenecity studies (segment II)

Genotoxicity studies (Ames Test, *in vitro* and *in vivo* Micronucleus and Chromosomal aberrations studies) *In vivo* carcinogenicity studies

Unit IV

IND enabling studies (IND studies)- Definition of IND, importance of IND, industry perspective, list of studies needed for IND submission.

Safety pharmacology studies- origin, concepts and importance of safety pharmacology. Tier1- CVS, CNS and respiratory safety pharmacology, HERG assay. Tier2- GI, renal and other studies

12 Hrs

12 Hrs

12 Hrs

Unit V

Toxicokinetics- Toxicokinetic evaluation in preclinical studies, saturation kinetics Importance and applications of toxicokinetic studies. Alternative methods to animal toxicity testing.

REFERENCES

- 1. Hand book on GLP, Quality practices for regulated non-clinical research and development (http://www.who.int/tdr/publications/documents/glp-handbook.pdf).
- 2. Schedule Y Guideline: drugs and cosmetics (second amendment) rules, 2005, ministry of health and family welfare (department of health) New Delhi
- **3.** Drugs from discovery to approval by Rick NG.
- **4.** Animal Models in Toxicology, 3rd Edition, Lower and Bryan
- **5.** OECD test guidelines.
- 6. Principles of toxicology by Karen E. Stine, Thomas M. Brown.
- Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals (http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/g uidances/ucm073246.pdf)

PRINCIPLES OF DRUG DISCOVERY (MPL203T)

Scope:

The subject imparts basic knowledge of drug discovery process. This informationwill make the student competent in drug discovery process

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the various stages of drug discovery.
- Appreciate the importance of the role of genomics, proteomics andbioinformatics in drug discovery
- Explain various targets for drug discovery.
- Explain various lead seeking method and lead optimization
- Appreciate the importance of the role of computer aided drug design in drugdiscovery

Unit-I

An overview of modern drug discovery process: Target identification, target validation, lead identification and lead Optimization. Economics of drug discovery.

Target Discovery and validation-Role of Genomics, Proteomics and Bioinformatics. Roleof Nucleic acid microarrays, Protein microarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zinc finger proteins. Role of transgenic animals in target validation.

Unit-II

Lead Identification- combinatorial chemistry & high throughput screening, in silico leaddiscovery techniques, Assay development for hit identification.

Protein structure

Levels of protein structure, Domains, motifs, and folds in protein structure. Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-ray crystallography in protein structure prediction

Unit-III

12 Hrs

Rational Drug Design

Traditional vs rational drug design, Methods followed in traditional drug design, High throughput screening, Concepts of Rational Drug Design, Rational Drug Design Methods: Structure and Pharmacophore based approaches

Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,

12 Hrs

12 Hrs

Unit-IV

Molecular docking: Rigid docking, flexible docking, manual docking; Docking based screening. De novo drug design.

Quantitative analysis of Structure Activity Relationship

History and development of QSAR, SAR versus QSAR, Physicochemical parameters, Hansch analysis, Fee Wilson analysis and relationship between them.

Unit-V

12 Hrs

QSAR Statistical methods – regression analysis, partial least square analysis (PLS) and other multivariate statistical methods. 3D-QSAR approaches like COMFA and COMSIA

Prodrug design-Basic concept, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design

References

- 1. MouldySioud. Target Discovery and Validation Reviews and Protocols: Volume 2 Emerging Molecular Targetsand Treatment Options. 2007 Humana Press Inc.
- 2. Darryl León. Scott MarkelIn. Silico Technologies in Drug Target Identification and Validation. 2006 by Taylor and Francis Group, LLC.
- 3. Johanna K. DiStefano. Disease Gene Identification. Methods and Protocols. Springer New York Dordrecht Heidelberg London.
- 4. Hugo Kubiny. QSAR: Hansch Analysis and Related Approaches. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- 5. Klaus Gubernator, Hans-Joachim Böhm. Structure-Based Ligand Design. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- Abby L. Parrill. M. Rami Reddy. Rational Drug Design. Novel Methodology and Practical Applications. ACS Symposium Series; American Chemical Society: Washington, DC, 1999.
- 7. J. Rick Turner. New drug development design, methodology and, analysis. John Wiley & Sons, Inc., Hoboken, New Jeney.

CLINICAL RESEARCH AND PHARMACOVIGILANCE (MPL204T)

Scope:

This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials.

This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in Pre-clinical, Clinical phases of Drug development and post market surveillance.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the regulatory requirements for conducting clinical trial
- Demonstrate the types of clinical trial designs
- Explain the responsibilities of key players involved in clinical trials
- Execute safety monitoring, reporting and close-out activities
- Explain the principles of Pharmacovigilance
- Detect new adverse drug reactions and their assessment
- Perform the adverse drug reaction reporting systems and communication in Pharmacovigilance

UNIT-I

Regulatory Perspectives of Clinical Trials:

Origin and Principles of International Conference on Harmonization - Good Clinical Practice (ICH-GCP) guidelines

Ethical Committee- Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant-Schedule Y, ICMR

Informed Consent Process: Structure and content of an Informed Consent Process Ethical principles governing informed consent process

UNIT-II

Clinical Trials: Types and Design

Experimental Study- RCT and Non RCT, Observation Study: Cohort, Case Control, Cross sectional

12 hours

12 hours

Clinical Trial Study Team

Roles and responsibilities of Clinical Trial Personnel: Investigator, Study Coordinator, Sponsor, Contract Research Organization and its management

UNIT-III

12 hours

Clinical Trial Documentation- Guidelines to the preparation of documents, Preparationof protocol, Investigator Brochure, Case Report Forms, Clinical Study Report Clinical Trial Monitoring-Safety Monitoring in CT

Adverse Drug Reactions: Definition and types. Detection and reporting methods.Severityand seriousness assessment.Predictability and preventability assessment, Management of adverse drug reactions; Terminologies of ADR.

UNIT-IV

12 hours

Basic aspects, terminologies and establishment of pharmacovigilance

History and progress of pharmacovigilance, Significance of safety monitoring, Pharmacovigilance in India and international aspects, WHO international drug monitoring programme, WHO and Regulatory terminologies of ADR, evaluation of medication safety, Establishing pharmacovigilance centres in Hospitals, Industry and National programmes related to pharmacovigilance. Roles and responsibilities in Pharmacovigilance

UNIT-V

12 hours

Methods, ADR reporting and tools used in Pharmacovigilance

International classification of diseases, International Non-proprietary names for drugs, Passive and Active surveillance, Comparative observational studies, Targeted clinical investigations and Vaccine safety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris G Pharmacovigilance, VigiFlow, Statistical methods for evaluating medication safety data.

UNIT-VI

PharmacoepiDermatology, pharmacoeconomics, safety pharmacology

12 hours

References:

- 1. Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health;2001.
- 2. International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice.E6; May 1996.
- 3. Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi.
- 4. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.
- 5. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 6. Handbook of clinical Research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone.
- 7. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes.

Experimental Pharmacology-II (MPL205P)

- 1. To record the DRC of agonist using suitable isolated tissues preparation.
- 2. To study the effects of antagonist/potentiating agents on DRC of agonist using suitable isolated tissue preparation.
- 3. To determine to the strength of unknown sample by matching bioassay by using suitable tissue preparation.
- 4. To determine to the strength of unknown sample by interpolation bioassay by using suitable tissue preparation
- 5. To determine to the strength of unknown sample by bracketing bioassay by using suitable tissue preparation
- 6. To determine to the strength of unknown sample by multiple point bioassay by using suitable tissue preparation.
- 7. Estimation of PA₂ values of various antagonists using suitable isolated tissue preparations.
- 8. To study the effects of various drugs on isolated heart preparations
- 9. Recording of rat BP, heart rate and ECG.
- 10. Recording of rat ECG
- 11. Drug absorption studies by averted rat ileum preparation.
- 12. Acute oral toxicity studies as per OECD guidelines.
- 13. Acute dermal toxicity studies as per OECD guidelines.
- 14. Repeated dose toxicity studies- Serum biochemical, haematological, urine analysis, functional observation tests and histological studies.
- 15. Drug mutagenicity study using mice bone-marrow chromosomal aberration test.
- 16. Protocol design for clinical trial.
- 17. Protocol design for clinical trial.
- 18. Protocol design for clinical trial.
- 19. Design of ADR monitoring protocol.

- 20. In silico docking studies.
- 21. In silico pharmacophore based screening.
- 22. In silico QSAR studies.
- 23. ADR reporting
- 24. In silico docking studies.

References

- 1. Fundamentals of experimental Pharmacology-by M.N.Ghosh
- 2. Hand book of Experimental Pharmacology-S.K.Kulakarni
- 3. Text book of *in-vitro* practical Pharmacology by Ian Kitchen
- 4. Bioassay Techniques for Drug Development by Atta-ur-Rahman, Iqbal choudhary and

William Thomsen

- 5. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 6. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists.

Vision and Mission of the Institution

Vision

The East Point College of Pharmacy aspires to be a globally acclaimed institution, **recognized** for **excellence in** pharmaceutical education, research and nurturing students for **holistic development**.

Mission

- M1 Create pharmacy graduates through quality education
- M2 Promote innovation, **creativity**, and excellence **in teaching**, learning, and **research**
- M3 Inspire integrity, teamwork, critical thinking, personal development, and ethics in students and lay the foundation for lifelong learning
- M4 Serve the healthcare, technological, scientific, and economic needs of then society.