# **East Point College of Pharmacy**

East Point Campus, Jnana Prabha, Virgo Nagar PostBengaluru – 560049, Karnataka

Approved by Pharmacy Council of India, New Delhi



Affiliated *to* Rajiv Gandhi University of Health SciencesKarnataka Bengaluru – 560041 India

## LAB MANUAL

## PHARMACEUTICAL ORGANIC CHEMISTRY-I

**B.** PHARM 2<sup>nd</sup> SEMESTER

EAST POINT COLLEGE OF PHARMACY

East Point Campus, Jnana Prabha, Virgo Nagar Post, Bengaluru – 560049, Karnataka

## **B** Pharmacy

## Program Outcomes (PO's)

#### **PO 1- Pharmacy Knowledge**

Possess knowledge and comprehension of the core and basic knowledge associated with the profession of pharmacy, including biomedical sciences; pharmaceutical sciences; behavioral, social, and administrative pharmacy sciences; and manufacturing practices.

#### **PO 2- Planning Abilities**

Demonstrate effective planning abilities including time management, resource management, delegation skills and organizational skills. Develop and implement plans and organize workto meet deadlines.

#### **PO 3- Problem analysis**

Utilize the principles of scientific enquiry, thinking analytically, clearly and critically, whilesolving problems and making decisions during daily practice. Find, analyze, evaluate and apply information systematically and shall make defensible decisions

#### PO 4- Modern tool usage

Learn, select, and apply appropriate methods and procedures, resources, and modernpharmacyrelated computing tools with an understanding of the limitations.

#### **PO 5- Leadership skills**

Understand and consider the human reaction to change, motivation issues, leadership and team-building when planning changes required for fulfillment of practice, professional and societal responsibilities. Assume participatory roles as responsible citizens or leadership roles when appropriate to facilitate improvement in health and wellbeing.

#### **PO 6- Professional Identity**

Understand, analyse and communicate the value of their professional roles in society (e.g.health care professionals, promoters of health, educators, managers, employers, employees).

#### **PO 7- Pharmaceutical Ethics**

Honor personal values and apply ethical principles in professional and social contexts. Demonstrate behaviour that recognizes cultural and personal variability in values, communication and lifestyles. Use ethical frameworks; apply ethical principles while making decisions and take responsibility for the outcomes associated with the decisions

#### **PO 8- Communication**

Communicate effectively with the pharmacy community and with society at large, such as, being able to comprehend and write effective reports, make effective presentations and documentation, and give and receive clear instructions

#### **PO 9-** The Pharmacist and society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety and legal issues and the consequent responsibilities relevant to the professional pharmacy practice.

## **PO 10- Environment and sustainability**

Understand the impact of the professional pharmacy solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

#### PO 11- Life-long learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. Self-access and use feedback effectively from others to identify learning needs and to satisfy these needs on an ongoing basis.

| Programme Specific Outcomes (PSO's) |                                                                                 |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|                                     | Acquire a thorough foundational knowledge in pharmaceutical sciences,           |  |  |  |  |
| PSO 1                               | including pharmacology, pharmaceutics, medicinal chemistry, and                 |  |  |  |  |
|                                     | pharmacognosy, to excel in further academic pursuits                            |  |  |  |  |
|                                     | Gain expertise in the application of contemporary pharmaceutical techniques and |  |  |  |  |
| PSO 2                               | technologies, enhancing employability across various sectors including the      |  |  |  |  |
|                                     | pharmaceutical industry, academia, and research institutions.                   |  |  |  |  |
|                                     | Equip with entrepreneurial skills and knowledge of pharmaceutical business      |  |  |  |  |
| DGO 2                               | management, including market analysis, product development, regulatory affairs, |  |  |  |  |
| PSO 3                               | and financial planning, to initiate and run successful ventures in the pharmacy |  |  |  |  |
|                                     | sector                                                                          |  |  |  |  |

| Course Outcomes (CO's)                          |                                                                           |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Code: BP208P Pharmaceutical Organic Chemistry-I |                                                                           |  |  |
| CO 1                                            | Identify the organic compounds by systematic qualitative analysis         |  |  |
| CO 2                                            | Determine the boiling /melting point of organic compounds and derivatives |  |  |
| CO 3                                            | Preparation of suitable solid derivatives from organic compounds          |  |  |
| CO 4                                            | Construction of molecular models                                          |  |  |



## **Table of Contents**

| Sl. No | List of the Experiments                         |
|--------|-------------------------------------------------|
| 1      | Preliminary Test                                |
| 2      | Qualitative Test for Phenols                    |
| 3      | Qualitative Test for Carbohydrates              |
| 4      | Qualitative Test for Amide/Urea                 |
| 5      | Qualitative Test for Carboxylic Acids           |
| 6      | Qualitative Test for Phenols                    |
| 7      | Qualitative Test for Aniline                    |
| 8      | Qualitative Test for Aldehydes                  |
| 9      | Qualitative Test for Ketones                    |
| 10     | Qualitative Test for Alcohols                   |
| 11     | Qualitative Test for Esters                     |
| 12     | Qualitative Test for Nitro Compounds            |
| 13     | Detection of Melting Point and Boiling Point    |
| 14     | Preparation of Derivatives of Organic Compounds |



## **Experiment. No 1** PRELIMINARY TEST **AIM:** To Perform the Preliminary tests for the given Organic Compound

| EXPERIMENT                                                                                                                                                                                                                                     | OBSERVATION                                                                                                                                                                                 | INFERENCE                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                | A. PRELIMINARY 7                                                                                                                                                                            | TEST                                                                                                                                                               |
| 1. Physical state                                                                                                                                                                                                                              | Solid<br>Liquid                                                                                                                                                                             | Maybe Carbohydrates, amides,<br>aromatic carboxylic acids etc<br>Maybe aldehydes, alcohols, aliphatic<br>acids, nitro compounds, esters etc                        |
| 2. Colour                                                                                                                                                                                                                                      | Coloured compounds.<br>Colourless compounds.                                                                                                                                                |                                                                                                                                                                    |
| 3.Odour                                                                                                                                                                                                                                        | <ul> <li>i.Odour of bitter<br/>almonds.</li> <li>ii.Fruity odour.</li> <li>iii.Odour of carbolic<br/>soap.</li> <li>iv.Fishy or Unpleasant<br/>odour.</li> <li>v.Pleasant odour.</li> </ul> | I. It may be benzaldehyde,<br>nitrobenzene.<br>ii.Ester.<br>iii.Phenol.<br>iv. All Amines.<br>v.Alcohols or Halogenated<br>hydrocarbon.                            |
| 4.Ignition Test<br>Take a little amount of<br>sample on Nickel spatula<br>and burn it on a bunsen<br>burner.                                                                                                                                   | If it burns with sooty<br>flame.<br>If it burns without sooty<br>flame.                                                                                                                     | Aromatic compound.<br>Aliphatic compound.                                                                                                                          |
| 5.Test for Unsaturation.<br>[Bayer's Test]<br>Substance +0.5ml of<br>acetone+0.5ml of sodium<br>carbonate<br>solution(Na <sub>2</sub> CO <sub>3</sub> )+Potassiu<br>m permanganate<br>Solution(KMnO <sub>4</sub> )drop wise<br>and shake well. | Decolourisation of<br>Potassium<br>permanganate.<br>Retaining colourisation<br>or No colourisation of<br>Potassium<br>permanganate.                                                         | Unsaturated compound.<br>Saturated compound.                                                                                                                       |
| 6.Litmus Test<br>Dissolve or suspend a small<br>amount of sample in water<br>and add a piece of red<br>litmus/blue litmus paper.                                                                                                               | Red litmus turns Blue.<br>Blue litmus turns Red.<br>No change in colour.                                                                                                                    | Sample is alkaline(amines etc).<br>Sample is acidic(Carboxylic acids,<br>Phenols, Alcohols etc).<br>Sample is neutral<br>(aldehydes,ketones,carbohydrates<br>etc). |
| B.TEST FOR SPECIAL<br>ELEMENTS<br>[LASSAIGNE'S TEST]                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                    |

COLLEGE OF PHARMACY

Place a small piece of freshly cut dry sodium in a dry fusion tube. Add a small amount of sample into the fusion tube. Heat the fusion tube to red hot. Once it is red hot transfer the fusion tube content to a mortar containing a small amount of water (1/2 or 3/4 test tube of distilled water). Crush the sodium fusion, and filter the solution. The filtrate is called Sodium Fusion Extract (SFE), which is further used to test Nitrogen, Sulphur & Halogens.

| 1. Test for Nitrogen                    | Plus or Groop colour             | Nitrogon Prosent  |
|-----------------------------------------|----------------------------------|-------------------|
| soln(SFE) in a test tube.               |                                  | Nutogen i resent. |
| Add a few crystals of                   | No Blue or Green                 | Nitrogen Absent.  |
| Ferrous sulphate. Boil                  | colour.                          | C                 |
| gently, cool, and acidify               |                                  |                   |
| with dil sulphuric acid till            |                                  |                   |
| the solution is clear. At last          |                                  |                   |
| add ImI of neutral ferric               |                                  |                   |
| 2 Test for Sulphur                      |                                  |                   |
| a Take 2ml of stock                     | Purple colour                    | Sulphur present   |
| solution(SFE) into a test               |                                  |                   |
| tube. Add 2-3 drops of                  | No Purple colour.                | Sulphur absent.   |
| freshly prepared sodium                 |                                  |                   |
| nitroprusside soln+1 drop               |                                  |                   |
| of dil.NaOH.                            |                                  |                   |
| b. Take 2ml of SFE in a test            | Brown/Black colour.              | Sulphur present.  |
| tube + 2-3 drops of Lead                | No Brown/Black colour.           | Sulphur Absent.   |
| acetate solution+ 1 drop of             |                                  |                   |
| acetic acid (CH <sub>3</sub> COOH).     |                                  |                   |
| 3. Test for                             |                                  |                   |
| Halogens(Cl,Br,I)                       | No Precipitate formed.           | Halogens Absent.  |
| Take 1ml of SFE+1ml of                  | Precipitate formed.              | Halogens Present. |
| dil. HNO <sub>3</sub> boil well & cool. | White colour ppt.                | Chlorine Present. |
| I hen add 10% AgNO <sub>3</sub>         | Soluble in NH40H and             |                   |
| Solution.                               | Pale vellow not                  | Bromine Present   |
|                                         | Sparingly soluble in             | bromme i resent.  |
|                                         | NH <sub>4</sub> OH and insoluble | Iodine Present.   |
|                                         | in dil. HNO <sub>3.</sub>        |                   |
|                                         | Yellow ppt. Insoluble in         |                   |
|                                         | both NH <sub>4</sub> OH and      |                   |
|                                         |                                  |                   |

| East Point Campus, Jnana Prabha, Virgo Nagar Post,<br>Bengaluru – 560049, Karnataka                                 |                                                   |                                                                          |                                                                                   |                                                       |                                                                                         |                                                                               |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                     |                                                   | 1                                                                        | C.SOLU                                                                            | BILITY TA                                             | BLE                                                                                     |                                                                               |                                                                                                  |
| Ι                                                                                                                   | II                                                | IIIa                                                                     | IIIb                                                                              | IV                                                    | V                                                                                       | VI                                                                            | VII                                                                                              |
| Soluble<br>in both<br>water<br>and<br>ether.                                                                        | Soluble in<br>water but<br>insoluble<br>in ether. | Soluble<br>in both<br>5%<br>NaOH<br>&<br>NaHC<br>O <sub>3</sub> .        | Solubl<br>e in<br>5%<br>NaOH<br>but<br>insolu<br>ble in<br>NaHC<br>O <sub>2</sub> | Soluble<br>in dil.<br>HCl<br>Ex-                      | Compounds<br>containing N<br>Soluble in<br>Conc.H <sub>2</sub> S<br>O <sub>4</sub>      | not<br>or S<br>Insoluble<br>in<br>Conc.H <sub>2</sub> S<br>O <sub>4</sub>     | Compoun<br>ds<br>containin<br>g N or S,<br>soluble in<br>Conc.<br>H <sub>2</sub> SO <sub>4</sub> |
| Ex-<br>Resorci<br>nol,<br>Oxalic<br>Acid.                                                                           | Ex-Urea,<br>Thiourea,<br>Dextrose,<br>Fructose.   | Ex-<br>Benzoi<br>c acid,<br>Cinna<br>mic<br>acid,<br>Salicyli<br>c acid. | Ex-<br>Pheno<br>1.                                                                | Aniline.                                              | Ex-<br>Ethanol,<br>Benzaldehy<br>de,<br>Acetophen<br>one, Ethyl<br>acetate.             | Ex-<br>Benzene,<br>Chloroben<br>zene.                                         | Ex-<br>Acetanili<br>de,<br>Nitroben<br>zene.                                                     |
| Lower<br>member<br>s of<br>1.Acids.<br>2.Pheno<br>ls.<br>3.Aldeh<br>ydes<br>and<br>ketones.<br>4.Esters.<br>5.Alcoh | 1.Amides<br>and Ureas.<br>2.Carbohy<br>drates     | 1.Acids<br>and<br>Phenoli<br>c acids                                     | 1.Phe<br>nols                                                                     | 1.Amines<br>(Primary,<br>Secondar<br>y,<br>Tertiary). | <ol> <li>Aldehyde<br/>s and<br/>ketones.</li> <li>Esters.</li> <li>Alcohols.</li> </ol> | 1.Halogen<br>ated<br>hydrocarb<br>ons.<br>2.Aromati<br>c<br>hydrocarb<br>ons. | 1.Amides<br>2.Anilide<br>s.<br>3.Nitro<br>compoun<br>ds.                                         |



## **Experiment.No:2** QUALITATIVE TEST FOR PHENOLS **AIM:** To Perform the Qualitative tests for Phenols

| EXPERIMENT                                                         | OBSERVATION           | INFERENCE                |
|--------------------------------------------------------------------|-----------------------|--------------------------|
| A. To the sample solution in a dry                                 | It gives a violet     | Resorcinol is present.   |
| test tube add 1-2 drops of neutral                                 | colour                |                          |
| ferric chloride (FeCl <sub>3</sub> ).                              |                       |                          |
| B. Phthalein Test                                                  |                       |                          |
| Take the sample in a dry test tube                                 |                       |                          |
| and add phthalic anhydride, few                                    |                       |                          |
| drops of Conc. H <sub>2</sub> SO <sub>4</sub> .Heat, cool          | It forms a yellowish- | Resorcinol is confirmed. |
| and transfer into a beaker which                                   | green fluorescence.   |                          |
| contains 5ml of water and 5ml of                                   |                       |                          |
| dil.NaOH.                                                          |                       |                          |
| C. Liberman n's Test                                               |                       |                          |
| Dissolve the sample in                                             |                       |                          |
| conc.H <sub>2</sub> SO <sub>4</sub> , add NaNO <sub>2</sub> to the |                       |                          |
| solution. Shake thoroughly and                                     | Gives a pink colour.  | Resorcinol is confirmed. |
| warm the solution. Transfer to a                                   |                       |                          |
| beaker which contain 10ml of                                       |                       |                          |
| water and make the soln alkaline                                   |                       |                          |
| by adding 1-2 drops of dil. NaOH.                                  |                       |                          |



## **Experiment.No:3** QUALITATIVE TEST FOR CARBOHYDRATES AIM: To Perform the Qualitative tests for Carbohydrates

| EXPERIMENT                                            | OBSERVATION                 | INFERENCE                    |
|-------------------------------------------------------|-----------------------------|------------------------------|
| A. Substance + Conc. $H_2SO_4$                        | Charring without evolution  | Carbohydrates are present.   |
| warm.                                                 | of gas.                     |                              |
| B. Molisch's Test                                     |                             |                              |
| 0.1g substance in 3ml of                              | Violet ring at the junction | Carbohydrates are present.   |
| water + 2-3 drops of                                  | and deep violet colour on   |                              |
| Molisch's reagent (10%                                | shaking.                    |                              |
| shake add 2ml of conc.                                |                             |                              |
| H <sub>2</sub> SO <sub>4</sub> along the sides of the |                             |                              |
| test tube without shaking.                            |                             |                              |
| C. Fehling's Test                                     |                             |                              |
| Equal volumes of fehling's                            | Red precipitate.            | Reducing Sugar (Glucose,     |
| solution A and B + dilute                             |                             | Fructose, Lactose, Maltose). |
| solution of the substance,                            |                             |                              |
| boil.                                                 |                             |                              |
| D. Barfoed's Test                                     |                             |                              |
| 1ml dilute solution of                                |                             |                              |
| substance + 1ml fresh                                 | Yellowish red ppt after     | Disaccharides.               |
| barfoed's reagent (0.3g                               | prolonged heating.          |                              |
| neutral copper acetate in 5ml                         |                             |                              |
| cold 1% acetic acid) – heat                           |                             |                              |
| in a water bath.                                      |                             |                              |
| E. Osazone formation                                  |                             |                              |
| Substance + sodium acetate                            | Yellow crystalline ppt of   | Carbohydrates.               |
| + phenyl hydrazine HCl -                              | osazone.                    | -                            |
| heat in a water bath.                                 |                             |                              |
| F. Benedict's reagent Test                            |                             |                              |
| 1ml of dilute soln of                                 | Orange or red ppt.          | Carbohydrate is a reducing   |
| substance + benedict's                                |                             | sugar.                       |
| reagent. Keep in a water                              |                             | C                            |
| bath, cool.                                           |                             |                              |
| G. Tollen's reagent Test                              |                             |                              |
| 1ml of dilute soln of                                 | Silver mirror or black ppt. | Carbohydrates is a reducing  |
| substance + tollen's reagent.                         |                             | sugar.                       |
| Keep in a water bath, cool.                           |                             | ç                            |
| L ·                                                   |                             |                              |
| H. Seliwanoff's Test                                  |                             |                              |
| 1ml dilute soln of substance                          | No Red colour.              | Aldosugar.                   |
| + seliwanoff reagent. Keep                            |                             | _                            |
| in a water bath, cool.                                |                             |                              |
| I. Polysaccharides Test                               |                             |                              |
| 1ml dilute soln of substance                          | No Blue colouration.        | Polysaccharides absent.      |
| + Iodine solution.                                    |                             |                              |



## **Experiment.No:4** QUALITATIVE TEST FOR AMIDES/ UREA AIM: To Perform the Qualitative tests for Carbohydrates

| EXPERIMENT                               | OBSERVATION                 | INFERENCE              |
|------------------------------------------|-----------------------------|------------------------|
| A. Boil 0.3g of the substance +          | Smell of Ammonia.           |                        |
| 3ml of 10% NaOH smell.                   |                             |                        |
| Hold a moist red litmus paper            | Red litmus turns to blue.   | Amide or urea present. |
| or glass rod dipped in                   | Dense white fumes of        |                        |
| Conc.HCl near the mouth of               | NH4Cl near the glass rod.   |                        |
| test tube.                               |                             |                        |
| B. Boil a small quantity of the          | Acetic acid evolved.        | Amide or urea present. |
| substance with 3ml of 1:1 HCl.           |                             |                        |
| C. Hoffmann reaction                     |                             |                        |
| 1ml of NaOH + bromine water              | Decolourised with evolution |                        |
| dropwise till yellow colour              | of                          | Urea is present.       |
| persists. Add 0.1g of the                | Nitrogen.                   |                        |
| substance.                               |                             |                        |
| D. Nitrous acid Test                     |                             |                        |
| Dissolve 0.3g of the substance           | Effervescence with          | Urea is present.       |
| + 3ml of dil. HCl + 3ml of               | evolution of nitrogen.      |                        |
| 10% NaNO <sub>2</sub> (Sodium Nitrite).  |                             |                        |
| E. <u>Urea Nitrate Test</u>              |                             |                        |
| Dissolve 0.3g of the substance           |                             |                        |
| + 3ml of water + 1ml                     | Crystals of Urea nitrate    | Urea is present.       |
| Conc.HNO <sub>3.</sub> Scratch the sides | separates out.              |                        |
| the test tube if necessary.              |                             |                        |
| F. Urea Oxalate Test                     |                             |                        |
| Dissolve 0.3g of the substance           |                             |                        |
| + 3ml of water + 1ml Conc.               | Crystals of Urea oxalate    | Urea is present.       |
| Oxalic acid solution. Scratch            | separates out.              |                        |
| the sides the test tube if               |                             |                        |
| necessary.                               |                             |                        |
| G. Biuret Test                           |                             |                        |
| Boil 0.3g of the substance in            |                             |                        |
| dry test tube + Dissolve in 3ml          | Purple/Violet colour.       | Urea is confirmed.     |
| of dil. NaOH. Add solution of            |                             |                        |
| a very dil.CuSO <sub>4</sub> dropwise.   |                             |                        |
| H. Test for Thiourea                     |                             |                        |
| a. Boil 0.3g of the substance in         | Brown/Black colour.         | Thiourea present.      |
| 3ml of dil. NaOH. Heat, add              |                             |                        |
| solution of lead acetate.                |                             |                        |
| b. Boil 0.3g of the substance            |                             |                        |
| and NaOH in dry test tube +              | Blood red colour.           | Thiourea present.      |
| Dissolve in water. Add                   |                             |                        |
| solution of aqueous FeCl <sub>3</sub>    |                             |                        |
| solution.                                |                             |                        |



## **Experiment.No:5** QUALITATIVE TEST FOR CARBOXYLIC ACIDS **AIM:** To Perform the Qualitative tests for Carboxylic acids

| EXPERIMENT                                                    | OBSERVATION                | INFERENCE              |
|---------------------------------------------------------------|----------------------------|------------------------|
| A. 0.3g of the substance $+$ 3ml of                           | Effervescence and clear    | May be Carboxylic      |
| NaHCO <sub>3</sub> .                                          | solution.                  | acid.                  |
| B. Esterification Test                                        |                            |                        |
| Substance + 1ml ethanol + 1ml Conc.                           |                            |                        |
| H <sub>2</sub> SO <sub>4</sub> - Heat for 5min cool-pour into | Fruity odour of ester.     | Carboxylic acid        |
| bicarbonate solution.                                         |                            | present.               |
| C. Substance + water shake well. Add 2 -3                     |                            |                        |
| drops of phenolphthalein and then small                       | Pink colour disappears.    | Carboxylic acid        |
| amount of dil. NaOH solution.                                 |                            | present.               |
| D. <u>Neutral FeCl<sub>3</sub> Test</u>                       | Violet colour or blue      | Dhaolia agid present   |
| Substance + neutral FeCl <sub>3</sub> solution.               | green colour.              | Pheone acid present.   |
|                                                               | Forms a buff colour ppt.   | Belizoic Acid present. |
| E. <u>KMnO<sub>4</sub> Test</u>                               |                            |                        |
| To substance add a few drops of KMnO <sub>4</sub>             | It gives a smell of bitter | Cinnamia Agid progent  |
| soln. Add dil.H <sub>2</sub> SO <sub>4</sub> and heat.        | almond.                    | Chinamic Acid present. |



## **Experiment.No:6** QUALITATIVE TEST FOR PHENOLS **AIM:** To Perform the Qualitative tests for Phenols

| EXPERIMENT                                         | <b>OBSERVATION</b>         | INFERENCE        |
|----------------------------------------------------|----------------------------|------------------|
| A. Bromination Test                                | A green or blue colour     |                  |
| Substance in water + $Br_2$                        | changes to red on dilution | Phenols present. |
| water drop by drop.                                | and blue green in alkali.  |                  |
| B. Libermann's reaction                            |                            |                  |
| Substance + few crystals of                        |                            |                  |
| NaNO <sub>2</sub> + few drops of                   | White crystalline ppt.     | Phenols present. |
| Conc.H <sub>2</sub> SO <sub>4</sub> warm cool-pour |                            |                  |
| into cold water add NaOH.                          |                            |                  |
| C. Scotten –baumann                                |                            |                  |
| Reaction                                           | Blue violet coloration.    | Phenols present. |
| Substance + NaOH + acetyl                          |                            |                  |
| or Benzoylchloride - Heat                          |                            |                  |
| and pour into water.                               |                            |                  |
| D. Neutral FeCl <sub>3</sub> Test                  | Greenish colour ppt.       | Phenols present. |
| Substance + FeCl <sub>3</sub> solution.            |                            |                  |
| E. Phthalein Test                                  |                            |                  |
| Substance + Phthalic                               |                            |                  |
| acid(2:1 ratio) + 2 drops of                       | Intense yellow or orange   | Phenol present.  |
| Conc. $H_2SO_4$ heat gently                        | fluorescence.              |                  |
| cool and pour into dil.                            |                            |                  |
| NaOH solution.                                     |                            |                  |

## **Experiment.No:7** QUALITATIVE TEST FOR ANILINE **AIM:** To Perform the Qualitative tests for Aniline

| EXPERIMENT                                 | OBSERVATION               | INFERENCE                              |
|--------------------------------------------|---------------------------|----------------------------------------|
| A. <u>Acetylation</u>                      |                           |                                        |
| Substance + acetyl chloride                | Vigorous reaction, solid  | $1^0$ or $2^0$ amines present.         |
| dropwise – shake.                          | separates.                |                                        |
| B. Carbylamine reaction                    |                           |                                        |
| Substance + 2 drops of                     | Unpleasant odour.         | 1 <sup>0</sup> amines present.         |
| CHCl <sub>3</sub> + 1ml alcoholic KOH      |                           |                                        |
| warm.                                      |                           |                                        |
| C. Diazotisation                           |                           |                                        |
| Substance in dil. HCl – cool               |                           |                                        |
| to $5^{0}$ C- pinch of NaNO <sub>2</sub> . | Orange Dye.               | Aromatic 1 <sup>0</sup> amine present. |
| Pour the above reaction                    |                           |                                        |
| mixture into ice cold beta –               |                           |                                        |
| Naphthol in NaOH.                          |                           |                                        |
| D. Sample + Conc. HCl +                    | Clear yellow solution     | Aromatic 1 <sup>0</sup> amine present. |
| sodium nitrite.                            | Turns starch iodide paper |                                        |
|                                            | blue.                     |                                        |

## **Experiment.No:8** QUALITATIVE TEST FOR ALDEHYDES **AIM:** To Perform the Qualitative tests for Aldehydes

| EXPERIMENT                           | OBSERVATION                    | INFERENCE                   |
|--------------------------------------|--------------------------------|-----------------------------|
| A. <u>2,4-DNP Test</u>               |                                |                             |
| 0.2g substance in 3ml dil.           | Yellow orange or red           |                             |
| HCl + 2ml solution of 2,4-           | crystalline ppt. at once or on | Aldehyde or Ketone present. |
| dinitrophenyl hydrazine in           | gentle warming on a water      |                             |
| dil. HCl, shake well, allow          | bath.                          |                             |
| for 5mins.                           |                                |                             |
| B. Sodium Bisulphite Test            |                                |                             |
| Equal amount substance and           | Pale yellow crystalline        | Aldehyde or Ketone present. |
| conc. Aq. solution of sodium         | solid.                         |                             |
| bisulphate.                          | (Exception Acetophenone).      |                             |
| C. Schiff's Reagent Test             |                                |                             |
| 2ml substance + 2ml schiff's         | Immediate pink or red          | Aldehydes.                  |
| reagent – shake for 2mins.           | colour.                        |                             |
| D. Fehling's solution Test           |                                |                             |
| Equal volumes of fehling's           | Blue colour changes to         | Benzaldehyde present.       |
| solution <b>A</b> & <b>B</b> + 0.2 g | reddish brown ppt.             |                             |
| substance – boil.                    |                                |                             |
| E. Tollen's Reagent Test             |                                |                             |
| To 2ml of tollen's reagent           |                                |                             |
| (1ml of AgNO3 soln. + 2              | Shining silver mirror or       | Benzaldehyde present.       |
| drops of NaOH + NH4OH                | black ppt.                     |                             |
| till brown ppt. just                 |                                |                             |
| dissolves). Add 2-3 drops of         |                                |                             |
| substance – keep the test            |                                |                             |
| tube in hot water bath.              |                                |                             |

## **Experiment.No:9** QUALITATIVE TEST FOR KETONES **AIM:** To Perform the Qualitative tests for Ketones

| EXPERIMENT                         | OBSERVATION              | INFERENCE                   |
|------------------------------------|--------------------------|-----------------------------|
| A. <u>2,4-DNP Test</u>             |                          |                             |
| 0.2g substance in 3ml dil. HCl +   | Yellow orange or red     | Aldehyde or Ketone present. |
| 2ml solution of 2,4-dinitrophenyl  | crystalline ppt. at once |                             |
| hydrazine in dil. HCl, shake well, | or on gentle warming     |                             |
| allow for 5 mins.                  | in a water bath.         |                             |
| B. Sodium Bisulphite Test          |                          |                             |
| Equal amount substance and         | Pale yellow crystalline  | Aldehyde or Ketone present. |
| conc. Aq. solution of sodium       | solid.                   |                             |
| bisulphate.                        | (Exception               |                             |
|                                    | Acetophenone).           |                             |
| C. Schiff's Reagent Test           |                          |                             |
| 2ml substance + 2ml schiff's       | No Immediate pink or     | Ketone present.             |
| reagent – shake for 2mins.         | red colour.              |                             |
| D. <u>Legal's Test</u>             |                          |                             |
| Substance + Sodium nitroprusside   | Wine Red colour.         | Acetophenone present.       |
| solution + dil. NaOH. Shake well   |                          |                             |
| + glacial acetic acid.             |                          |                             |
| E. Zimmermann Test                 |                          |                             |
| 1ml of sample + 1ml of alcohol +   | Immediate violet         | Acetophenone present.       |
| 0.1g of meta dinitrobenzene +      | colour.                  |                             |
| NaOH soln – shake well.            |                          |                             |
| F. Iodoform Test                   |                          |                             |
| Substance + Iodine in 20% KI       |                          |                             |
| soln. Warm, add more iodine soln   | A yellow ppt. of         | Acetophenone confirmed.     |
| till the colour persists + 1ml of  | iodoform.                |                             |
| 10% NaOH soln.                     |                          |                             |



## **Experiment.No:10** QUALITATIVE TEST FOR ALCOHOLS **AIM:** To Perform the Qualitative tests for Alcohols

| EXPERIMENT                                              | OBSERVATION           | INFERENCE                 |
|---------------------------------------------------------|-----------------------|---------------------------|
| A. Reaction with sodium                                 |                       |                           |
| Take 1ml of the compound in a                           | The effervescence of  | The alcohol group is      |
| dry test tube, and dissolve in dry                      | hydrogen gas evolved. | present.                  |
| benzene. Add a small piece of                           |                       |                           |
| freshly cut sodium metal.                               |                       |                           |
| B. Reaction with acetic anhydride                       |                       |                           |
| Take 1ml of compound in a dry                           |                       |                           |
| test tube. Add equal amount of                          | Fruity Odor is        | Alcohol group is present. |
| acetic anhydride and 2 drops of                         | obtained.             |                           |
| Conc. H <sub>2</sub> SO <sub>4</sub> . It is warmed and |                       |                           |
| poured into a beaker containing                         |                       |                           |
| 20ml of NaHCO <sub>3</sub> soln.                        |                       |                           |



## **Experiment.No:11** QUALITATIVE TEST FOR ESTERS AIM: To Perform the Qualitative tests for Esters

| EXPERIMENT                                  | OBSERVATION               | INFERENCE               |
|---------------------------------------------|---------------------------|-------------------------|
| A. Hydrolysis Reaction                      |                           |                         |
| Take 1 ml of compound in a test             |                           |                         |
| tube and add 2 drops of NaOH                | White ppt. is observed.   | Aromatic Ester present. |
| soln and a drop of                          |                           |                         |
| Phenolphthalein indicator. Heat to          |                           |                         |
| this and add 3ml of Conc.HCl,               |                           |                         |
| heat and cool.                              |                           |                         |
| B. Hydroxamine Acid Test                    |                           |                         |
| Take 2 drops of the compound in             |                           |                         |
| a test tube. Add 3ml of                     | A purple colour appeared. | Esters are present.     |
| hydroxylamine HCl soln and a                |                           |                         |
| drop of Phenolphthalein indicator.          |                           |                         |
| To the resulting mixture, add               |                           |                         |
| alcoholic KOH till it gets pink             |                           |                         |
| colour. Boil & cool. Add 3ml of             |                           |                         |
| 2N HCl & 5 drops of FeCl <sub>3</sub> soln. |                           |                         |



## **Experiment.No:12** QUALITATIVE TEST FOR NITRO COMPOUNDS **AIM:** To Perform the Qualitative tests for Nitro compounds

| EXPERIMENT                                  | OBSERVATION          | INFERENCE             |
|---------------------------------------------|----------------------|-----------------------|
| A. Mulliken's and Barker's Test             |                      |                       |
| Substance + 2ml ethanol + 1ml               |                      |                       |
| $CaCl_2$ solution + pinch of Zn dust        | Black ppt.           | Nitrocompond present. |
| or tin boil for 5min cool and filter        |                      |                       |
| into 2ml of tollen's reagent. Heat          |                      |                       |
| on water bath if necessary.                 |                      |                       |
| B. Acid Reduction Test                      |                      |                       |
| Substance + conc. HCl + pinch of            |                      |                       |
| Zn dust boil, cool perform dye              | Red colour Dye.      | Nitrocompond present. |
| test. Add 0.1g of NaNO <sub>2</sub> soln,   |                      |                       |
| cool at $0-5^{\circ}c$ and add B-           |                      |                       |
| Naphthol soln. in NaOH.                     |                      |                       |
| C. Janowsky Reaction                        |                      |                       |
| Substance $+ 5ml$ acetone $+ 2ml$ of        | Faint yellow colour. | Mono Nitrocomponds    |
| 5% NaOH. Shake well.                        |                      | present.              |
| D. Substance + FeSO <sub>4</sub> crystals + |                      |                       |
| dil. H2SO <sub>4</sub> + ethanolic KOH,     | Brown ppt.           | Mono Nitrocomponds    |
| shake well.                                 |                      | present.              |



## **Experiment.No:13 DETERMINATION OF MELTING POINT AIM: To determine the melting point of the given sample Apparatus:** Thermometer, capillary tube, Burner, Stand, Thread

#### **Chemicals Required**:

Liquid paraffin wax, and sample substance

#### **Principle:**

Melting point is defined as the temperature at which solid becomes into liquid substances under a pressure of one atmosphere is called melting point.

Melting point is determined one of the most common techniques used to characteristic the organic compound and to check the state of purity. Melting point of a crystalline solid is the temperature at which solid begins to change into liquid state. The purity of the compound has sharp melting point due to which the change from solid to liquid is quick. Impure sample has lower melting point than that of pure. Its melting range is wide. Both temperature and sharpness of the melting (range) point are the useful criteria of purity.

#### **Procedure:**

One end of the capillary tube is sealed by heating, it in the non-luminous portion of the flame as well as continuously rotating heating until it is closed. The open end of the capillary tube is pushed into a small amount of completely dried and finally powdered organic compound which is under examination. The powder is shaking by tapping the sealed end of the capillary tube on the bench. The procedure is repeated until the length of the powder material is 3-4 mm outside of the capillary tube wiped clean.

A thermometer is inserted into a one hold rubber stopper. The capillary tube is tied to the thermometer with a rubber band and a thread. The capillary tube is tied in such a way that it's sealed end & indirect contact with the bulb of thermometer.

The tube is filled with liquid paraffin. The thermometer with the capillary tube is immersed in liquid paraffin in such a way that the open end of the capillary tube and rubber band should be above the level of the liquid paraffin the side arm of the tube is heated at a uniform rate. The flame of the burner & adjusted in such a way that the temperature at which the last crystal disappeared and this melting point is reported.

#### **Report:**

The given sample melts at .....



## **Experiment.No:13** DETERMINATION OF BOILING POINT **AIM:** To determine the boiling point of the given sample **Apparatus:**

Distillation flask, thermometer, stand, burner

## **Principle:**

Boiling point of the liquid is the temperature at which liquid begins to boil and gets converted into its vapor form. This is usually a characteristic of liquid or solvent in its pure form.

Boiling point involves breaking of oppositely charged ions. This occurs when temperature is reached at which thermal energy of the particle is great enough to overcome cohesive force that hold the molecules. Generally, when reasonable amount of liquid compounds are available boiling point is determined by slowly distilling the material from a sphere shaped flask &regarded the boiling point at the temperature at which the liquids starts distilling for small quantity of liquid. The material should be distilled using boiling point apparatus.

## **Procedure:**

Transfer the given liquid into a distillation flask and add 1 or 2 fragments of porcelain. Arrange the apparatus in such a way that the bulb of the thermometer should be in the centre of the flask & slightly below the side tube heat the flask from a flame and adjust the flame in such a way that the distillate is collected at the rate of 1 or 2 drops / Sec. The temperature will rise rapidly until it is near the boiling point of the liquid then slowly and finally it remains constant.

Record the temperature when in remains the constant. Collect the liquid and continue distillation until only a small volume of liquid remains in the flask. Observe the boiling point.

## **Report:**

The given liquid boils at ...



## Experiment.No:14

#### THE PREPARATION OF DERIVATIVES OF ORGANIC COMPOUNDS.

AIM: To prepare derivatives of some class organic compounds.

The preliminary examination and group classification tests indicate the particular class (functional group) to which an unknown organic compound may belong. Further characterization and identification depends on the selection and preparation of a suitable solid derivative and accurate determination of its melting point ( best, between 90 -150). The following table lists some of the class of organic compounds and selection of derivatives that may be prepared to characterize them.

| Class of Compound        | Derivatives                                       |
|--------------------------|---------------------------------------------------|
| 1. Alcohols              | 3,5-Dinitrobenzoate                               |
| 2. Phenols               | Benzoate, acetate, bromo derivative               |
| 3. Aldehydes and Ketones | Semicarbazone, 2,4-Dinitrophenyl-hydrazone, oxime |
| 4. Acids                 | Anilide, amide, p-toluidine                       |
| 5. Amines                | Benzoyl, Acetyl and Sulponamide derivatives       |

## Methods for the preparation of derivatives.

## 1. Alcohols:

## (i)3,5-Dinitrobenzoates

3,5-Dinitrobenzoyl chloride is mixed with the alcohol (0.5-1ml) in a loosely corked dry test tube and heated on the steam bath for about 10min. Secondary and tertiary alcohol require upto 30mins. On cooling add 10ml sodium hydrogen carbonate solution, stir until the ester crystallises out, and filter at the pump. Wash with a little carbonate solution, water and suck dry. Recrystallise from the minimum hot ethanol or light petroleum. Cool slow to avoid the formation of oily droplets of your ester.

## 2. Phenols:

(i)Benzoates (Schotten-Baumann method).

To the phenol (0.5g) is added 5% NaOH 10ml in a well-corked boiling tube or a small conical flask. Benzoyl chloride (2ml) is added in small quantities at a time, and the mixture shaken vigorously with occasional cooling under the tap or in ice water.



After 15min the solid benzoate is separates out: the solution should be alkaline at the end of the reaction; if not alkaline, or if the product is oily, add a solid pellet of NaOH & shake again. Collect the benzoate, wash thoroughly with cold water and recrystallize from alcohol or light petroleum.

#### (ii)Acetates

Acetates of many simple phenols are liquids; however, this is a suitable derivatives for polyhydric and substituted phenols. The phenol (0.5g) is dissolved in 10% NaOH soln. and an equal quantity of crushed ice is added, followed by acetic anhydride (2ml). The mixture is vigorously shaken in a stoppered test tube until the acetic separates. The product is filtered and recrystallized from alcohol.

## (iii)Bromo derivative

The phenol (0.3g) is suspended in dil. HCl (10ml) and bromine water added dropwise until no more decolourisation occurs. The bromo derivative which ppt. out is filtered out and recrystallize from alcohols.

## 3. Aldehydes and Ketones

## (i) Semi carbazones

Dissolve semic arbazide HCl (1g) and sodium acetate (1.5g) in water (8-10ml), add the aldehyde or ketone (0.3ml) and shake the mixture for few minutes and then cool in ice water. Filter off the crystals, wash with a little cold water and recrystallize from methanol or ethanol.

## (ii) 2,4-dinitrophenyl hydrazones

Suspend 0.25g of 2,4-dinitrophenyl hydrazine in 5ml of methanol and add 0.5ml of conc. $H_2SO_4$  cautiously. Filter the warm soln. and add the soln. of 0.2g of the carbonyl compound in 1ml of methanol. Recrystallize the derivative from methanol, ethanol or ethyl acetate.

#### (iii) Oximes

Hydroxyl amine HCl (0.5g) is dissolved in water (2ml). 10%NaOH (2ml) and carbonyl compound (0.2-0.3g) dissolved in alcohol (1-2ml) are added, the mixture warmed on steam bath for 10min and then cooled in ice. Crystallization induced by scratching the sides of the test tube with a glass rod. The oximes may be crystallised from alcohol.



#### 4. Acids:

#### (i) Amides, Anilides and p-toluidine's

The acid (0.5g) is reflexed with thionyl chloride (2-3ml) in a fume cup board for about 30mins\*. It is advisable to place a plug of cotton wool in the top of the reflux condenser to exclude moisture. The condenser is removed and the excess of thionyl chloride is distilled off (b.p.78). The acid chloride thus produced is treated with concentrated ammonia solution(5ml) or aniline (0.5-1ml) or p-toluidine (0.5-1g), when the solid derivative separates out. It is collected and recrystallized from alcohol adding decolourising charcoal if found necessary. \*Alternately used PCl<sub>5</sub> to form the acid chloride.

#### 5. Amines:

## (i)Acetyl derivatives(acetamides)

Reflux gently in small dry flask under a dry condenser the amine(1g) with acetic anhydride(3ml) for 15mins. Cool the reaction mixture and pour into 20ml cold water. Boil to decompose the excess acetic anhydride. Cool and filter by suction the insoluble derivative. Recrystallize from ethanol.

(ii)Benzoyld erivaties(benzamides)

Suspend 1g of the amine in 20ml of 5% aqueous sodium hydroxide in well corked flask, and add 2ml of benzoyl chloride (fume hood), about 0.5ml at a time, with constant shaking. Shake vigorously for 5-10mins until the odour of the benzoyl chloride has disappeared. Ensure that the mixture remains alkaline. Filter off the solid derivates, wash with a little cold water and recrystallize from ethanol

(iii)Benzene sulphonamides

To 1g of the amines in 20ml of 5% sodium hydroxide solution in a well corked flask and 1ml of benzene sulphonyl chloride (fume hood). Shake the mixture until the odour of the sulphonyl chloride disappears. Check that the solution is alkaline. Acidify is necessary to obtain the precipitated derivative. Concentrated hydrochloric acid added drop wise should be used. Filter the product, wash with a little cold water and suck dry. Recrystallized from ethanol.



## Vision and Mission of the Institution Vision

The East Point College of Pharmacy aspires to be a globally acclaimed institution, **recognized** for **excellence in** pharmaceutical education, research and nurturing students for **holistic development**.

## Mission

- M1 Create pharmacy graduates through quality education
- M2 Promote innovation, creativity, and excellence in teaching, learning, and research
- M3 Inspire integrity, teamwork, critical thinking, personal development, and ethics in students and lay the foundation for lifelong learning
- M4 Serve the healthcare, technological, scientific, and economic needs of then society.